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Nonmagnetic microspheres confined in a ferrofluid layer are denoted by magnetic holes. They form aggre-
gates due to dipolar interactions when an external magnetic field is exerted. Their cluster-cluster aggregation
was studied for various magnetic fields using optical microscopy, both for small spheres of diameters,d
=1.9 and 4mm, for which Brownian motion was important and for large spheres of diameter,d=14 mm, for
which Brownian motion was not important. The results for the two smaller sizes were in agreement with
standard dynamic scaling theory and the dynamic scaling exponentz for the average cluster lengthSstd, tz was
found to be slightly smaller than 0.5, while for the largest spheres thez exponent showed a strong dependence
on the magnetic-field strength.
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I. INTRODUCTION

Nucleation, aggregation, and formation of complex struc-
tures from small subunits like atoms or colloidal particles
have been investigated for decades[1]. Studies of structure
formation and kinetics during a phase separation are of in-
terest for both theoretical and technological reasons[2]. Al-
though systems with short-range interactions are fairly well
understood, our knowledge of processes dominated by long-
range interactions is far from complete. In this paper we
report experimental studies of the kinetics of magnetic-field
induced chains formation of nonmagnetic particles[3] dis-
persed in thin layers of ferrofluid[4,5].

The kinetics of irreversible aggregation is usually de-
scribed by Smoluchowski’s mean-field theory[6] where co-
agulation processes can be written in terms of the following
reaction scheme:

Ai + Aj ——→
Ksi,jd

Ai+j ,

whereAi denotes a cluster of massi. When two clusters of
massi and j meet, they join irreversibly to form a cluster of
massi + j at a rate governed by the constantKsi , jd. Smolu-
chowski’s kinetics theory well describes systems character-
ized by a low concentration of particles with only binary
collisions among clusters; spatial correlations of the con-
densed phase are not considered, i.e., the interactions are of
short range.

Meakin [7], and independently Kolb, Botet, and Jullien
[8], developed a computer aggregation model of Brownian
particles which stick together to form rigid clusters. They
generalized the diffusion limited aggregation model(DLA )
[9], where only single particles can diffuse, allowing diffu-
sion of all clusters. This model is denoted the cluster-cluster
aggregation(CCA) model[2] where the newly formed clus-

ters diffuse along with the single particles and continue to
grow by aggregation when they meet other clusters or par-
ticles. If the particles are joined together on a first contact it
is referred to as the diffusion limited cluster aggregation
(DLCA) model [2]. These computer models remove some
limitations of the mean-field Smoluchowski theory and en-
able studies of higher concentrations of particles taking into
account the spatial and long-range correlations among them.
Vicsek and Family[10] found universal properties of the
DLCA mass conservative model for two-dimensional(2D)
systems. The cluster size distributions as function of cluster
size and time obey a dynamic scaling form.

The DLA [9] and DLCA [7,8] models were developed to
describe the formation of fractal objects. Miyazimaet al.
[11] applied ideas from these models also to aggregation of
oriented anisotropic rodlike particles that form linear struc-
tures. The DLCA model also reflects the main features of
aggregation in ferrofluids were all dipolar particles are
aligned into chains in the external field direction[12,13].

Experimental studies of colloidal aggregation have been
carried out, for example, with paramagnetic microspheres
[14,15], nanoparticles[16,17], sulfonated polystyrene latex
spheres in colloidal monolayer[18], and electric-field-
induced association of dielectric particles[19]. The results
have essentially confirmed the scaling behavior of the mean
cluster size as a function of time[7,8,11] and it has been
possible to scale the temporal size distribution of clusters
[14,17,18] into a single universal curve as predicted by dy-
namic scaling theory[10].

The scaling exponents are constants that classify the
growth process. A few experiments have shown that under
specific conditions the scaling exponents can deviate from
the theoretically predicted or simulated values. The fractal
dimension of objects created by growth processes can be
influenced by the growth velocity[20], the coupling constant
of the dipole-dipole interaction among paramagnetic par-
ticles [14], or the relative coverage of the aggregates[21].
Variations in the growth dynamics have also been observed
during magnetic-field induced aggregation of paramagnetic*Electronic address: jcernak@kosice.upjs.sk
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microspheres. In particular, the scaling exponentz for the
temporal dependences of the mean cluster sizeSstd, tz was
influenced by the strength of the dipole-dipole interaction
with variations z=1.4–1.7 [14] and z=0.45–0.75[15], in
contrast to the simulated valuesz=1.4 [10] and z=0.5 [11]
for weak and strong dipolar interactions, respectively. Values
of z= 2

5 for electrorheological fluid aggregation[22] and z
<1.0 for magnetic latex particle aggregation[23] have also
been reported.

In the present work we have studied the chain formation
of nonmagnetic microspheres dispersed in a thin layer of
ferrofluid [3] induced by external magnetic fields. Experi-
mental data are discussed in the framework of dynamic scal-
ing theory[10], previous experiments on other colloidal sys-
tems [14,15], and computer simulations[11,24,25]. In
particular, we have tried to investigate the specific conditions
that influence the scaling exponentz.

The paper is organized as follows: Secs. II and III contain
a description of the basic properties of ferrofluids and mag-
netic holes that are relevant for our study; Sec. IV contains
the experimental setup and method; Sec. V a summary of
dynamic scaling theory; Sec. VI the experimental results;
and Sec. VII contains the discussion.

II. FERROFLUIDS

A ferrofluid is a suspension of single-domain magnetic
particles of a typical diameterd<10 nm dispersed in a car-
ried fluid [4,5]. The particles mostly used are made from
magnetite, Fe3O4, but other materials are also employed[26].
If two colloidal particles come close together, the van der
Waals forces will irreversibly bind them together. This has to
be prevented in order to make stable ferrofluids. This attrac-
tive interaction can be overcome by introducing additional
repulsive interactions(steric or Coulombic) between the par-
ticles. The steric repulsion is realized by a surfactant on the
particles. If the carrier fluid is water, the Coulombic stabili-
zation takes place via a volume charge created around the
nanoparticles with appropriate ions.

Ferrofluids have rich physical behaviors with unconven-
tional rheological, thermal, magnetic, optical, and electrical
properties with many applications[4,5]. In fact, the uses of
ferrofluids were early examples of nanotechnology. One of
the simplest physical model of ferrofluids is based on the
assumptions that magnetic particles are spherical without
electrostatic charge and that the van der Waals interaction
between two such spheres is negligible. When external mag-
netic fields are applied, then long-range dipole-dipole inter-
action between arbitrary two grains dominate and the par-
ticles tend to form chains aligned with the magnetic fieldH
[27]. Earlier experimental works confirm the existence of
chains or needles[12,21] and support the picture predicted
by de Gennes and Pincus[27] in the zero magnetic-field
limit where randomly oriented chains of various sizes and
form and closed rings are formed[28], similar to a polydis-
perse polymer melt. Recent results obtained by cryogenic
transmission electron microscopy[29] demonstrate the exis-
tence of dipolar chain structures in a ferrofluid without an
external magnetic field.

III. MAGNETIC HOLES

Magnetic holes are nonmagnetic voids in a ferrofluid. By
using monodisperse polystyrene microspheres prepared by
the Ugelstad method[30] very uniformly sized magnetic
holes may be created. The microspheres are much larger
s1–100mmd than the magnetic particles in the ferrofluid
(typically 0.01mmm) so they move in an approximately uni-
form background. When an external magnetic fieldH is ap-
plied, the void produced by a single microsphere possesses
an effective magnetic moment equal in size but opposite in
direction to the magnetic moment of the displaced fluid:

mi = − xeffVH , s1d

wherexeff is the effective volume susceptibility andV is the
volume of the sphere[3]. Including the demagnetization fac-
tor, xeff=x / s1+2x /3d for a spherical magnetic hole, wherex
is the susceptibility of the ferrofluid. Two magnetic holes
with magnetic momentsmi andm j interact via an anisotropic
dipolar potential,

Uij
dip =

m0

4p

mi ·m j − 3sr̂ ·midsr̂ ·m jd
r3 , s2d

where r is the vector between particle centers andr̂ is the
unit vector r / r. The dimensionless interaction strength pa-
rameterl, which characterizes the strength of the dipole-
dipole interaction relative to the disruptive thermal energy, is
defined as

l =
Umax

dip

kT
, s3d

wherek is Boltzmann’s constant andT is the temperature.
The main advantage of this systems is the possibility to

model a broad range of physical phenomena from aggrega-
tion to the complex dynamic of many-body systems[31]. In
our case we can create experimental conditions that are close
to the theoretical assumptions of Ref.[27], i.e., the particles
are spherical, monodisperse, and their resulting induced
magnetic moments are oriented in the direction of the exter-
nal magnetic field. In order to study the importance of
dipole-dipole interaction and Brownian motion relative to
non-Brownian ballistic drift, we used microspheres with dif-
ferent diametersd=1.9, 4, and 14mm. In zero external mag-
netic fields the diffusive Brownian motion of the 1.9-mm
spheres is clearly visible in the microscope. However, the
diffusion of the 14-mm spheres can only be seen by compar-
ing images taken at typically 30-sec. time intervals.

IV. EXPERIMENT

The experimental setup shown in Fig. 1 consists of an
optical microscope(Nikon Optiphot) with a video adapter,
one pair of coils, and a carefully prepared sample. A video
camera (JVC charge-coupled device with resolution 768
3576 pixels), a digital camera(Nikon Coolpix with resolu-
tion 160031200 pixels) and a personal computer were used
to capture, store, and analyze the microscopic images.

The sample of size about 20320 mm consisted of poly-
styrene microspheres dispersed in a thin layer of ferrofluid
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which was confined between two glass plates and sealed. A
very low concentration of larger microspheres of diameter
d=50 mm was used as spacer to keep an even layer thickness
of the kerosene based ferrofluid[32] which was used. The
physical properties were: density%=1020 kgm−3, suscepti-
bility x=0.8, saturation magnetizationMs=20 mT, and vis-
cosity h=6310−3 Nsm−2.

The experiments were performed at room temperature,
using magnetic-field intensities in the rangeH
=100–1300 A m−1, and a relative volume fraction(or cov-
erage) of particlesf=0.002–0.10. Starting from a random
initial configuration of polystyrene microspheres inside the
ferrofluid layer, a constant magnetic fieldH parallel to the
layer was switched on. The field-induced aggregation was
captured at definite time intervals. The total duration of an
observation was up to 3 h. The number of clusters and their
size (length) were determined by analyzing the optical mi-
crographs. Two independent image processing methods were
used to analyze the microscopic pictures and they gave ap-
proximately the same results.

V. DYNAMIC SCALING THEORY

Here we summarize some of the notations and relevant
findings of dynamic scaling theory that will be used later.
The number of clusters with the same sizes is denotednsstd,
representing the cluster size distribution at timet. Nstd
=osnsstd is the total number of clusters. The weighted mean
cluster size is given by[10]

Sstd =
os

nsstds2

os
nsstds

. s4d

The temporal evolution of a cluster-cluster aggregation
processes is characterized by a power-law time dependence
of the mean cluster size

Sstd , tz, s5d

and the cluster size distributionnsstd at timet. Dynamic scal-
ing theory [10] predicts the following scaling relationship
between these quantities:

nsstd , t−ws−tfss/tzd s6d

or in an alternative form:

nsstd , s−2gss/tzd. s7d

Here fsxd is a cutoff function with fsxd.1 for x!1 and
fsxd!1 for x@1. gsxd is a scaling function,gsxd!1 for x
@1 andgsxd,xD for x!1, whereD is called the crossover
exponent. Based on the assumption that the aggregation is
mass independent, the following relationships between these
scaling exponents were derived[10]:

w = zD s8d

andt=2−D.
Using expression Eq.(6) it was found[2,33] that

Nstd , t−z8 ; H t−z for t , 1

t−w for t . 1.
J s9d

The dynamic scaling theory[10] was generalized by Meakin
et al. [33] in the case when the diffusion coefficientDs for a
cluster of masss was given by

Ds = D0s
g, s10d

whereD0 is a constant andg is the diffusion exponent(g
=0 means mass independent diffusion). The theoretical pre-
diction for the crossover exponentD is

D = Hs2 − td for g . gc

2 for g , gc,
J s11d

wheregc is a critical value ofg at which aggregation dynam-
ics changes from being dominated only by the large cluster–
small cluster interactions(below gc) to a dynamics where
large-small and large-large clusters processes are equally in-
portant. Also, the shape of the cluster-size distributionns
crosses over from a monotonically decreasing function of
cluster sizes abovegc to a bell-shaped curve below. It was
believed that in 2Dgc.−1

4 and in 3Dgc.−1
2 [33,34], but

more recent simulations have shown thatgc<0 in one di-
mension while the shape of the cluster size distribution
changes atg,0.7 [35]. It was then argued by Hellénet al.
[35] that gc=0 in higher dimensions too.

VI. RESULTS

One typical result of the aggregation process is shown in
the micrographs in Fig. 2 with the growth of clusters of
4-mm magnetic holes. Figure 2(a) shows the initial state
without a magnetic fieldsH=0d. As may be seen, the spheres
are at random positions within the ferrofluid layer. The non-
magnetic spheres can move randomly as they are subject to
Brownian motion. As soon as a constant external magnetic
field H is applied parallel with the sample surface, the field-
induced aggregation starts as seen in Figs. 2(b) and 2(c) and
with a gradual increased chaining of the particles with time
along the field direction as a result of their field-induced
magnetic momentmi. It was observed that when two par-
ticles were close they stuck and remained joined together on
first contact in an irreversible aggregation process. All the
clusters formed were straight and looked similar to those
found in electric field induced colloidal aggregation[19].
However, forlø1 fractal aggregates can form[14,36]. For

FIG. 1. The experimental setup used to study aggregation of
polystyrene microspheres.
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high particle volume fractions,f.0.2, we saw some degree
of sidewise coalescence of chains[13].

In order to characterize the aggregation process in more
detail, the lengths of any cluster was determined at different
time intervalst relative to the initial timet=0 when the field
was turned on. The time dependences of the number of clus-
ters Nstd and mean cluster size(length) Sstd for a typical
experiment withd=4-mm particles are shown in Fig. 3. We
see that the data asymptotically follow the power lawsNstd
, t−z8 andSstd, tz with scaling exponentsz8=0.43±0.01 and
z=0.40±0.01 fort.60 s.

Figure 4 shows the scaling functionsgsxd as presented in

Eq. (7) for the data in Fig. 3. As may be seen, the data
obtained at timest,100 s deviate from a common curve for
s/Sstdø1. On the other hand, for timet.100 s where the
average cluster sizeSstd obeys a power law, the data scale

FIG. 2. Optical micrographs of the aggregation ofd=4-mm mi-
crospheres at different times:(a) t=0 s, (b) t=417 s, and(c) t
=5019 s after a magnetic fieldH=800 A m−1 was turned on.

FIG. 3. (a) The number of clustersNstd and (b) the mean
(weight average) cluster lengthSstd [Eq. (4), in units of sphere
diameters] versus time for an experiment withd=4-mm micro-
spheres atl=370. The best fits for the corresponding scaling expo-
nentsz8 andz are shown as solid lines.

FIG. 4. The scaling functiongsxd=s2nsstd obtained from the
cluster size distributionsnsstd at interaction strengthl=370. The
cluster size distributions plotted are for the single time instantt
=30 s and average values for the time intervalst=100–1000 s,
1000–5000 s, and 5000–15 000 s. Forx,1 and timet.100 s the
data have been fitted to a power lawgsxd,xD with exponentD
=1.39±0.07.
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properly with a crossover exponentD=1.39±0.07 for
s/Sstd,1 and times in the ranget=100–15 000 s.

Microspheres with diametersd=1.9, 4, and 14mm and
magnetic-field intensity H in the range
200,H,1300 A m−1 were used to get values of the inter-
action strength parameterl [Eq. (3)] in the range
8,l,1.63104. The relative volume fraction of micro-
spheres was relatively low, typicallyf=0.02–0.04. The re-
sults show a small dependence of the scaling exponentz on
the parameterl and on particle diameter. For the smallest
particle diameterd=1.9 mm, the scaling exponentz is inde-
pendent ofl in the parameter rangel=8–50. The average
value of the scaling exponent isz=0.42±0.06 which is
somewhat lower than the predicted valuez=0.5 [11,25]. For
larger particles with diameterd=4 mm, we have observed a
somewhat broader range ofz values,z=0.45±0.10, as com-
pared to those for the smallest particles. A fit to a linear
relationship betweenz and l for l=8–500 giveszsld
=0.409+2.053310−4l.

Quite different results were obtained for the biggest par-
ticles with diameterd=14 mm. For these particles there were
a very strong dependence ofz on thel parameter. The value
of z reached very low values,z,0.25, for l,3000. For
parameterl in the interval 103,l,104, the scaling expo-
nent zsld grows almost linearly with logsld up to a maxi-
mum value z<0.6 and could be fitted aszsld<−1.33
+0.473 log10sld. The cluster size distributionsnsstd for the
14-mm particles could also be scaled into a scaling function
as shown in Fig. 7 forl=3470. The best fit for the exponent
D, D=1.83±0.09, is shown as a solid line in this figure.
Generally, the data collapse to a scaling functiongsxd was
worse for the 14-mm particles than for the smaller sizes.

The fitting results for the exponentsz, z8, and D for all
particle sizes and some selected experiments are summarized
in Table I, along with a few of the exponent values reported
earlier in the literature for low values ofl. As seen, our
results for the values ofz andz8 are often nearly equal. For
these cases the value ofD is close toD=1.5. Otherwise, the
value ofD is considerably higher.

VII. DISCUSSION

The aggregates formed in our experiments have a rodlike
form and may therefore be compared to earlier computer
simulations on the aggregation of oriented anisotropic par-
ticles [11]. These simulations were based on the following
assumptions:(i) the diffusion coefficientDs for a cluster of
masss was given by Eq.(10); (ii ) the direction of motion for
a cluster was selected randomly to model a Brownian cluster;
and (iii ) a strong nearest-neighbor interaction. The scaling
behavior of the mean cluster sizeSstd given by Eq. (4),
Sstd, tz, and the number of clustersNstd, t−z8, was found in
these computer simulations for various values of the diffu-
sion coefficientg in 2D and 3D systems. The scaling expo-
nents were approximately equal,z=z8, in most simulations.
In particular, forg=−1 in 2D and for low particle concen-
trations,z=0.5 was found to be a universal value. For highly
concentrated samples a crossover to 1D aggregation took

place and the scaling exponentz was lower,z=1/3. The
cluster size distributionnsstd collapsed to a single curve[Eq.
(7)] as predicted by the dynamic scaling theory[10]. In con-
trast to the above assumptions, in our experiments the inter-
actions are of long range and dipolar in character, hydrody-
namic couplings may be important, and the diffusion
constant may possibly be anisotropic.

Our experimental data show that the total number of clus-
tersNstd and the mean cluster sizeSstd scales with time, see
Fig. 3, up to times where the finite size of the observed
system becomes important. The scaling exponentsz and z8
are approximately equal, but slightly lower than the valuez
=0.5 predicted for a system withg=−1 [11]. The cluster size
distributions at different times can be scaled into a single
curvegsxd, see Fig. 4, that supports dynamic scaling theory
[10]. For low values ofl these results are in a good qualita-
tive agreement with the scaling found in the DLCA model
simulations by Miyazimaet al. [11], but with minor quanti-
tative deviations.

A detailed study of the influence of the interaction
strength parameterl and particle diameterd on the scaling
exponentz, shows a more complexzsld dependence as seen
in Fig. 5. For the smallest particlesd=1.9 mm and l
=8–50, the average scaling exponentz=0.42±0.06 is inde-
pendent on the parameterl and is significantly lower than

TABLE I. The characteristic exponents of the dynamics scaling
theoryz, z8, andD for different particle diametersd, dimensionless
magnetic interaction parameterl, and the volume fraction of par-
ticles f.

d smmd l f zs±0.01d z8s±0.01d D

0.0114a 4.6 0.021 0.786 0.67±0.15 0.8

0.6b 8.6 0.0004 0.75±0.01

0.6b 8.6 0.0020 0.51±0.01

0.8c 13 0.03 1.08±0.12

1.27d 31 0.009 0.60±0.02

3.6e 1360 1.7±0.2

1.9 8.0 0.0023 0.42 0.42 1.42±0.12

1.9 16.6 0.48 0.46 1.47±0.26

1.9 37.0 0.39 0.40 1.40±0.11

4 9.1 0.021 0.41 0.38 1.61±0.07

4 150 0.0047 0.38 0.44 1.94±0.07

4 250 0.48 0.54 1.88±0.10

4 340 0.54 0.54 1.53±0.13

4 370 0.060 0.40 0.43 1.39±0.07

14 1040 0.050 0.084 0.15 3.20±0.19

14 2070 0.20 0.26 2.44±0.10

14 3470 0.25 0.30 1.83±0.09

14 6260 0.036 0.40 0.37 1.57±0.10

14 10600 0.037 0.59 0.60 1.47±0.20

aIn Refs.[16,17].
bIn Ref. [15].
cIn Ref. [23].
dIn Ref. [19] (aggregation in electric field).
eIn Ref. [14].
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the valuez=0.5 found in computer simulations[11], in ex-
perimental works on dipolar magnetic nanoparticles[17]
sz=0.786d, and for superparamagnetic latex particles[15]
sz=0.45–0.75d. However, it is close to the valuez=0.40
found for aggregation in an electrorheological fluid[22]. The
finding of an apparently weak increase in the value ofz for
l.50 is opposite to what was reported by Promislowet al.
[15] who found a decrease inz for largerl.

For the largest particle sizeslù103d the z exponent is
strongly dependent on magnetic-field strength, orl, and
there was almost no growth for the weakest fields. The field
dependence is probably due to a more dominating effect of
the field-induced, ballistic motions of the microspheres. Low
growth rate can also possibly be due to direct contact, or
even sticking, between the microspheres and one of the glass
plates when the Brownian motion is small and the self-
centering repulsion force[3,37,38] from the boundary con-
ditions is weak. For parameterl.5000 the value of the
scaling exponentsz is in the range found for the smaller
particles sizes and in other experiments on DLCA[15]. zsld
increases up to aboutz<0.6. This is clearly larger than the
theoretically expectedz=0.5, but agrees with previous re-
sults [15]. Increasing values of the scaling exponentzsld
=0.5→0.8 have been found in computer simulations of fer-
romagnetic colloidal particles[24] for 7,l,13. A value of
l,800 at the transition between diffusion dominated and
field (ballistic drift) dominated aggregation may seem high.
However, the typical interaction energy involved is much
less since this is the interaction energy at typical interparticle
distances. This typical distance is,1/Îf<5 particle diam-
eters for a relative volume fractionf=0.04. SinceU, r−3,
then a typical magnetic energy isU,sl /125d kT<5 kT and
of the order of magnitude as one would expect.

Miguel et al. [25] have taken into account hydrodynamic
interactions in computer simulations of a dipolar, anisotropic
DLCA model. Their basic assumption was that the diffusion
coefficients were different for parallel,Di, and perpendicular,
D', orientation relative to the rod’s axis and were given by

Di ,
ln s

s
, D' ,

Di

2
. s12d

The logarithmic correction of the diffusion coefficientsDi

and D' incorporated the dependence on the shape of the

clusters and lead to a functional dependence of the average
cluster size of the form

Sstd , ht lnfSstdgjz, s13d

wherez=d/ s2+dd for dødc=2 andz= 1
2 otherwise.

In order to be able to compare to the predictions of the
anisotropic diffusion model of Miguelet al. [25], we have in
Fig. 6 replotted the cluster length data shown in Fig. 3(b)
using the functional form of Eq.(13). The exponent of the
power-law dependencez=0.31±0.01 was clearly lower than
the value z=0.40±0.01 found using the normal isotropic
scaling assumptions. The goodness of fit was not improved
using the new functional form. Similar changes were ob-
tained when other datasets were replotted according to Eq.
(13). In Ref. [25] it was reported that computer simulations
on an anisotropic diffusion model in two dimensions gave
z=0.61 assuming the standard scaling form in Eq.(5) and
z=0.51 using the anisotropic scaling form in Eq.(13). Our
values ofz andz are clearly lower. Forlù104, z<0.6 and
we find kzl=0.53±0.02 which is in agreement with the find-
ings of Miguelet al. [25] for their dipolar, anisotropic DLCA
model.

In most of the experiments the cluster size distributions
nsstd were found to scale into a scaling functiongsxd as given
by Eq. (7). The asymptotic behavior of the scaling functions
gsxd can be expressed asgsxd,xD or gsxd,exps−x−umud as
x=s/Sstd→0, depending on the details of how clusters join
[34,35]. Two examples are shown in Figs. 4 and 7 forl
=370 and 3470, respectively. For the case shown in Fig. 4
the scaling exponents were nearly equal,z=0.40 andz8
=0.43, and the best-fit value for the crossover exponent was
D=1.39±0.07. Figure 7 shows a borderline case where the
value of z is just below the lower limit for validity of the
DLCA description,zù

1
3. Herez=0.25 andz8=0.30, and the

crossover exponentD was found to beD=1.83. However, the
scaling function still seems to have a power-law behavior for
small x=s/Sstd. In a few experiments with low values ofz,
or at early times in some other experiments, the decay at
small x was faster than a power law. In Table I we compare

FIG. 5. The scaling exponentsz as a function of the dimension-
less parameterl [Eq. (3)] for microspheres of diameter:d=1.9, 4,
and 14mm. FIG. 6. The weighted average chain lengthSstd (in units of

sphere diameters) with the effects of anisotropic diffusion taken into
account. The experimental data are the same as in Fig. 3(b).
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some of our measured values for the scaling exponents to
earlier reported experimental values. The values ofz are
clearly lower than what have been reported before in the
literature.

Since we found thatD.1 in all cases, the value oft, t
=2−D,1, and then from Eq.(9) z8=z. This is nearly ful-
filled within the experimental uncertainty for those cases in
Table I where the value ofD is clearly smaller than 2. For
those withD.1.8, the values ofz and z8 are different and
the assumptions of the DLCA model may not be fulfilled.
For two of the casesD.2 andz, z8,

1
3 which is thez value

for 1D systems[11,25], and we are outside the applicability
of the DLCA model. Observation of a scaling function be-
havior gsxd,xD is similar to the earlier reported measure-
ments of nanoparticle aggregation[17] (d=0.0114mm in
Table I). In that caset=2−D.1, z8=w and the exponents
satisfy the exponent relation in Eq.(8). In the present case
with t,1, we cannot get the exponentw directly from the
data.

For several model systems it has been found thatz
=1/s1−gd whereg is the diffusion exponent of Eq.(10). For
the values ofz, 0.4,z,0.5, found for the two smallest par-
ticle sizes this relation will giveg values in the range
−1.5,g,−1.0, which is smaller than the critical value
gcs2Dd.−1

4 [33]. For this caset,1 and Eq.(9) shows that
z8=z, which was fulfilled in many of our measurements.
With g,gc, thenD=2 according to Eq.(11), which was not
the case here, and one should not have seen the power-law
behavior found in our data. Our measurements fit better to
the caseg.gc, with t=2−D<0.5, which is also consistent
with z8=z from Eq.(11). However, it may be pointed out that
for s/Sstd!1 the statistics in our data is limited and our
estimates ofD are lower limits, so it cannot be excluded that
D→2 in the asymptotic limit.

The results from the largestsd=14 mmd particles with a
very strong dependence ofz on l are, to our knowledge, not
consistent with any of the cluster aggregation models pro-

posed so far. For large particles with small Brownian mo-
tions and long-range interactions, one might expect that the
ballistic dynamics is dominating. In simulations of 1D field-
driven cluster-cluster aggregation(FDCA) by Hellén et al.
[35] it was found that the value ofz depended on the value of
the velocity of the ballistic motions and the value was found
to vary from 0.4 to well above 2. In that work it was assumed
that the ballistic velocity of the clusters varied asv,sd. In
our case, the interaction between clusters is proportional to
the cluster volume, i.e., the size, andd<1. For 1D systems
d=1 is the value for crossover to gelling. Below this value
and the lined=g−1 in the sg ,dd phase diagram, the 1D
scaling functiongsxd should depend exponentially onx and
not show power-law behavior as we apparently see in two
dimensions.

Preliminary results from computer simulations on a de-
tailed model for field-induced aggregation of large magnetic
holes in a 2D layer[39] show a behavior withz=0.50 in
agreement with earlier simulation results[11]. However, the
exploration of the full 2D and 3Dsg ,dd, or diffusion versus
field, phase diagram is still a challenge.

VIII. CONCLUSIONS

The field-induced aggregation of nonmagnetic micro-
spheres inside a ferrofluid layer has been studied. The scaling
behaviors of the average chain lengthSstd and number of
clustersNstd where found for a range of values of the dimen-
sionless interaction strengthl. The chain length distributions
nsstd could be transformed into a scaling functiongsxd as
required in DLCA, but the exponentsz andD of the dynamic
scaling theory were found to depend on the interaction
strengthl.

For microspheres with diametersd=1.9 and 4mm, the
exponentz of the cluster length,Sstd, tz, was found to be
z<0.42 in a broad interval of thel parameter: 8,l,500.
There was a slight increase inz with largerl. In the case of
the largest microspheres,d=14 mm, the scaling exponentz
was strongly dependent onl for l.1000 with values in the
interval 0.08,zø0.6. However, scaling exponentsz,

1
3 are

inconsistent with the DLCA model.
The cluster number exponentz8, Nstd, tz8, was found to

be nearly equal toz, and clearly different from the exponent
w=zD. The relations among the scaling exponents found for
DLCA models with short-range interactions were not ful-
filled in this system. This may be due to the long-range na-
ture of the dipole-dipole interactions in the system and the
partly ballistic character of the particle motions.
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FIG. 7. The scaling functiongsxd=s2nsstd obtained from the size
distributionsnsstd for d=14-mm particles with interaction strength
l=3470. Forx,1, gsxd,xD with D=1.83±0.09 was found. The
scaling exponents for this experiment were:z=0.25,z8=0.30, and
the maximum observation time wastmax=6120 s.
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